Asalamualaikum. Selamat datang di blog saya. Semoga isi dari blog ini bermanfaat bagi Anda. Jangan lupa dikomentari atau disharekan :) SUKSES BERAWAL DARI SEBUAH KEGAGALAN YANG DIBENAHI DAN DILAKUKAN TANPA MENGENAL LELAH. KAMU HARUS BERMANFAAT BAGI ORANG LAIN!!!

Senin, 07 Januari 2013

mekflu


Soal No. 1
Ahmad mengisi ember yang memiliki kapasitas 20 liter dengan air dari
sebuah kran seperti gambar berikut! 
Jika luas penampang kran dengan diameter D2 adalah 2 cm2 dan kecepatan aliran air
di kran adalah 10 m/s tentukan:
a) Debit air
b) Waktu yang diperlukan untuk mengisi ember

Pembahasan
Data :
A2 = 2 cm2 = 2 x 10−4 m2
v2 = 10 m/s
a) Debit air
Q = A2v2 = (2 x 10−4)(10)
Q = 2 x 10−3 m3/s
b) Waktu yang diperlukan untuk mengisi ember
Data :
V = 20 liter = 20 x 10−3 m3
Q = 2 x 10−3 m3/s
t = V / Q 
t = ( 20 x 10−3 m3)/(2 x 10−3 m3/s )
t = 10 sekon
Soal No. 2
Pipa saluran air bawah tanah memiliki bentuk seperti gambar berikut! 


Jika luas penampang pipa besar adalah 5 m2 , luas penampang pipa kecil adalah 2 m2 dan kecepatan aliran air pada pipa besar adalah 15 m/s, tentukan kecepatan air saat mengalir pada pipa kecil!

Pembahasan
Persamaan kontinuitas
A1v1 = A2v2
(5)(15) = (2)v2
v2 = 37,5 m/s
4. Sebuah pipa 150 mm mengalirkan 0.08 m3/s, pipa itu bercabang menjadi dua pipa yang satu garis tengahnya 50 mm dan yang lain garis tengahnya 100 mm. Jika kecepatan dalam pipa 50 mm besarnya 12 m/det, berapakah kecepatan dalam pipa 100 mm ?
Pembahasan :
Dik :
dB : 50 mm = 0,05 m
d: 100 mm = 0,1 m
υB : 12 m/s
QA : 0,08 m3/s
Dit : υC ... ?
Jawab :
QQB + QC
QA = ¼ π db2 υ+ ¼ π dc2 υC
0,08 m3/s = ¼ (3,14) (0,05 m)2 (12 m/s) + ¼ (3,14) (0,1 m)2 υC
0,08 m3/s = 0,02355 m3/s + 0,00785 m2 υC
0,00785 m2 υC = 0,05645 m3/s
υC = 7,2 m/s

»»  READMORE...

Rabu, 02 Januari 2013

SIKLUS DIESEL


SIKLUSDIESEL
In Max's senior capstone design, the thermal efficiencies and the compression ratios of an ideal Otto cycle and an ideal Diesel cycle are required.
Assumptions:
  • Cold-air-standard assumption is valid for this analysis. The constant volume specific heat cv = 0.718 kJ/(kg-K), the constant pressur specific heat cP = 1.005 kJ/(kg-K)
  • Model the cycle in the car engine as an ideal Otto cycle and an ideal Diesel cycle, respectively.
     

P-v and T-s Diagram of the Otto Cycle
 
(1) Determine the thermal efficiency and compression ratio using ideal Otto-cycle model
The P-v and T-s diagrams of the ideal Otto cycle are shown on the left. The thermal efficiency and compression ratio using the Otto-cycle model has been determined in the previous section. They are:
      Thermal efficiency: ηth, Otto = 53.3%
      Compression ratio: r = 6.7
     

P-v and T-s Diagram of the Diesel Cycle
 
(2) Determine the thermal efficiency and compression ratio using Diesel-cycle model
The P-v and T-s diagrams of the ideal Diesel cycle are shown on the left. The previous section, the properties at the four states of an Otto cycle was determined. They are:
      state 1: T1 = 15oC, P1 = 100 kPa (given)
      State 2: T2 = 343.3oC
      State 3: T3 = 1800oC (given)
      State 4: T4 = 695.7oC
The heat input to the cycle is:
      qin,Otto = cv23 (T3 - T2) = 0.718(1800 - 343.3)
                 = 1045.9 kJ
In Diesel cycle, with the temperature limit is the same as In Otto cycle, temperature at state 1 and state 3 are:
      T1 = 15oC
      T3 = 1800oC
Also, heat input is the same as in the ideal Otto cycle. In Diesel cycle, heat is input from the constant pressure cycle.
      qin,Diesel = cP23 (T3 - T2) = 1.005 (1800 - T2)
                   = 1045.9 kJ
The temperature at state 2 can be determined from the above expression. That is,
      T2 = 759.3oC = 1032.3 K
The thermal efficiency of the ideal Diesel cycle is:
     
where r is the compression ratio and rc is the cutoff ratio.
      r = v1/v2
      rc = v3/v2
In Diesel cycle, process 1-2 is isentropic compression process. It gives,
     
Hence, the compression ratio of an ideal Diesel-cycle is 24.3, which is much higher than the compression ratio of an ideal Otto-cycle, which is 6.7.
Process 2-3 in an ideal Diesel cycle is an constant pressure cycle. Thus,
     
It gives that the cutoff ratio equals 2.01.
Substitute the compression ratio and cutoff ratio to the expression of thermal efficiency yields,
     
Also, the thermal efficiency of the ideal Diesel-cycle is much higher than the ideal Otto-cycle, which is 53.3%.

»»  READMORE...

SIKLUS OTTO


In Max's senior capstone design, the thermal efficiencies and the compression ratios of an ideal Otto cycle and an ideal Diesel cycle are required.
Assumptions:
  • Cold-air-standard assumption is valid for this analysis. The constant volume specific heat cv = 0.718 kJ/(kg-K), the constant pressur specific heat cP = 1.005 kJ/(kg-K)
  • Model the cycle in the car engine as an ideal Otto cycle and an ideal Diesel cycle, respectively.
     

P-v and T-s Diagram of the Otto Cycle
  (1) Determine the thermal efficiency and compression ratio using ideal Otto-cycle model
The P-v and T-s diagrams of the ideal Otto cycle are shown on the left. The thermal efficiency and compression ratio using the Otto-cycle model has been determined in the previous section. They are:
      Thermal efficiency: ηth, Otto = 53.3%
      Compression ratio: r = 6.7

     

P-v and T-s Diagram of the Diesel Cycle
  (2) Determine the thermal efficiency and compression ratio using Diesel-cycle model
The P-v and T-s diagrams of the ideal Diesel cycle are shown on the left. The previous section, the properties at the four states of an Otto cycle was determined. They are:
      state 1: T1 = 15oC, P1 = 100 kPa (given)
      State 2: T2 = 343.3oC
      State 3: T3 = 1800oC (given)
      State 4: T4 = 695.7oC
The heat input to the cycle is:
      qin,Otto = cv23 (T3 - T2) = 0.718(1800 - 343.3)
                 = 1045.9 kJ
In Diesel cycle, with the temperature limit is the same as In Otto cycle, temperature at state 1 and state 3 are:
      T1 = 15oC
      T3 = 1800oC
Also, heat input is the same as in the ideal Otto cycle. In Diesel cycle, heat is input from the constant pressure cycle.
      qin,Diesel = cP23 (T3 - T2) = 1.005 (1800 - T2)
                   = 1045.9 kJ
The temperature at state 2 can be determined from the above expression. That is,
      T2 = 759.3oC = 1032.3 K
The thermal efficiency of the ideal Diesel cycle is:
      
where r is the compression ratio and rc is the cutoff ratio.
      r = v1/v2
      rc = v3/v2
In Diesel cycle, process 1-2 is isentropic compression process. It gives,
      
Hence, the compression ratio of an ideal Diesel-cycle is 24.3, which is much higher than the compression ratio of an ideal Otto-cycle, which is 6.7.
Process 2-3 in an ideal Diesel cycle is an constant pressure cycle. Thus,
      
It gives that the cutoff ratio equals 2.01.
Substitute the compression ratio and cutoff ratio to the expression of thermal efficiency yields,
      
Also, the thermal efficiency of the ideal Diesel-cycle is much higher than the ideal Otto-cycle, which is 53.3%.
»»  READMORE...
Related Posts Plugin for WordPress, Blogger...